Histological validation of DW-MRI tractography in human postmortem tissue.

نویسندگان

  • Arne K Seehaus
  • Alard Roebroeck
  • Oriana Chiry
  • Dae-Shik Kim
  • Itamar Ronen
  • Hansjürgen Bratzke
  • Rainer Goebel
  • Ralf A W Galuske
چکیده

Despite several previous attempts, histological validation of diffusion-weighted magnetic resonance imaging (DW-MRI)-based tractography as true axonal fiber pathways remains difficult. In the present study, we establish a method to compare histological and tractography data precisely enough for statements on the level of single tractography pathways. To this end, we used carbocyanine dyes to trace connections in human postmortem tissue and aligned them to high-resolution DW-MRI of the same tissue processed within the diffusion tensor imaging (DTI) formalism. We provide robust definitions of sensitivity (true positives) and specificity (true negatives) for DTI tractography and characterize tractography paths in terms of receiver operating characteristics. With sensitivity and specificity rates of approximately 80%, we could show a clear correspondence between histological and inferred tracts. Furthermore, we investigated the effect of fractional anisotropy (FA) thresholds for the tractography and identified FA values between 0.02 and 0.08 as optimal in our study. Last, we validated the course of entire tractography curves to move beyond correctness determination based on pairs of single points on a tract. Thus, histological techniques, in conjunction with alignment and processing tools, may serve as an important validation method of DW-MRI on the level of inferred tractography projections between brain areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Validation of In utero Tractography of Human Fetal Commissural and Internal Capsule Fibers with Histological Structure Tensor Analysis

Diffusion tensor imaging (DTI) and tractography offer the unique possibility to visualize the developing white matter macroanatomy of the human fetal brain in vivo and in utero and are currently under investigation for their potential use in the diagnosis of developmental pathologies of the human central nervous system. However, in order to establish in utero DTI as a clinical imaging tool, an ...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

Diffusion tractography of post-mortem human brains: Optimization and comparison of spin echo and steady-state free precession techniques

Diffusion imaging of post-mortem brains could provide valuable data for validation of diffusion tractography of white matter pathways. Long scans (e.g., overnight) may also enable high-resolution diffusion images for visualization of fine structures. However, alterations to post-mortem tissue (T2 and diffusion coefficient) present significant challenges to diffusion imaging with conventional di...

متن کامل

AxTract: Toward microstructure informed tractography.

Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography has become the tool of choice to probe the human brain's white matter in vivo. However, tractography algorithms produce a large number of erroneous streamlines (false positives), largely due to complex ambiguous tissue configurations. Moreover, the relationship between the resulting streamlines and the underlying white matter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2013